Singular Symmetric Hyperbolic Systems and Cosmological Solutions to the Einstein Equations

Characterizing the long-time behavir of solutions to the Einstein field equations remains an active area of research today. In certain types of coordinates the Einstein equations form a coupled system of quasilinear wave equations. The investigation of the nature and properties of solutions to these equations lies in the field of geometric analysis. We make several contributions to the study of solution dynamics near singularities. While singularities are known to occur quite generally in solutions to the Einstein equations, the singular behavior of solutions is not well-understood. A valuable tool in this program has been to prove the existence of families of solutions which are so-called asymptotically velocity term dominated (AVTD). It turns out that a method, known as the Fuchsian method, is well-suited to proving the existence of families of such solutions. We formulate and prove a Fuchsian-type theorem for a class of quasilinear hyperbolic partial differential equations and show that the Einstein equations can be formulated as such a Fuchsian system in certain gauges, notably wave gauges. This formulation of Einstein equations provides a convenient general framework with which to study solutions within particular symmetry classes.!

Unlike most other websites we deliver what we promise;

  • Our Support Staff are online 24/7
  • Our Writers are available 24/7
  • Most Urgent order is delivered with 6 Hrs
  • 100% Original Assignment Plagiarism report can be sent to you upon request.

GET 15 % DISCOUNT TODAY use the discount code PAPER15 at the order form.

Type of paper Academic level Subject area
Number of pages Paper urgency Cost per page: